\square These slides/notes represent only part of the course, and were accompanied by face-to-face explanations on white-board and additional topics / learning materials.
\square In preparation of these slides I have also benefited from various books and online material.
Some of the slides contain animations which may not be visible in pdf version.
Corrections, comments, feedback may be sent to https://www.linkedin.com/in/naveedrazzaqbutt/

EE 202
 Electric Circuit Analysis

with
Dr. Naveed R. Butt
@
Jouf University

Introductions ...

- Me
- You
- The Course

Important Business!!

- 75% attendance is mandatory!
- Textbooks \& Notes
- Electric Circuits, J. Nilsson and S. Riedel, 2014
- Lecture notes are posted on Blackboard https://Ims.ju.edu.sa/
- Contact
- nbutt@ju.edu.sa
- office: 1021

Learning Plan

- Lectures

- Help discover and grasp new concepts
- Quizzes (six)
- Help prepare/revise each week's concepts
- Keep you from lagging behind in course
- Presentation
- Helps learn independent work \& presentation
- Prepares for final year project
- Exams (Mid-1, Mid-2, Final)
- Help prepare entire course material

Assessment Plan

Course project

In this course we will discuss ...

- Three-phase circuits and power calculations
- Linear op-amp and op-amp circuits
- Transient and steady-state response of the first-order and the second-order circuits
- Laplace transform and solution of circuits in complex-frequency domain
- Frequency response of passive circuits, transfer functions, poles and zeros,
- Resonance networks, and filters
- Two-Port networks
- Mutually-coupled coils and the ideal transformer

Course Learning Objectives (CLOs)

CLO \#	Domain	Description	Assessment
CLO 1	Cognitive Skills	Calculate power factor corrections for basic electric circuits	HW, Quiz, Mid, Final
CLO 2	Cognitive Skills	Calculate parameters related to balanced three phase circuits	HW, Quiz, Mid, Final
CLO 3	Cognitive Skills	Calculate parameters related to transient behavior of first order circuit, and Laplace Transform.	HW, Quiz, Mid, Final
CLO 4	Cognitive Skills	Analyze the operational amplifiers and two port networks	HW, Final
CLO 5	Communication	Demonstrate the ability to research a topic related to electric circuits and formally present the results	Project Presentation

$$
8 \%
$$

EE 202
 Electric Circuit Analysis

with
Dr. Naveed R. Butt
@
Jouf University

Electric? Circuit? Analysis?

- What are each of these three!
-Electric?
- What are the various fields? (electric, magnetic, gravitational...)
- Where does the electric field exist?
- Why is it so important to us now? (hint: electricity)
- Circuit?
- Latin circumire "go around," from circum "round" + ire "to go"
- Also recall "circle"
- Electric Circuit (electricity going around)

Electric? Circuit? Analysis?

- What are each of these three!
- Analysis
- What does "analysis" mean?
- "resolution of anything complex into simple elements"
- ana "throughout" + lysis "a loosening"
- Why do we do it? (hints: understand, design, utilize, plan, avoid)

Circuits Everywhere

Electrical circuits seem to be everywhere!

A Simple Circuit

Units and Prefixes

- SI Base Units
- SI prefixes for large and small quantities ("metric" system)

System of Units

The International System of Units, or Système International des Unités (SI), also known as metric system uses 7 mutually independent base units. All other units are derived units.

Fac	am	Symbol	Fact	Name	Symbol
10^{24}	yotta	Y	10^{-1}	deci	d
10^{21}	zetta	Z	10^{-2}	centi	c
10^{18}	exa	E	10^{-3}	milli	m
10^{15}	peta	P	10^{-6}	micro	μ
10^{12}	tera	T	10^{-9}	nano	n
10^{9}	giga	G	10^{-12}	pico	p
10^{6}	mega	M	10^{-15}	femto	f
10^{3}	kilo	k	10^{-18}	atto	a
10^{2}	hecto	h	10^{-21}	zepto	z
10^{1}	deka	da	10^{-24}	yocto	y

Current and Voltage

- Let's talk about each

Electric Current (Charges in Motion!)

- Current: net flow of charge across any cross section of a conductor, measured in Amperes (Andre-Marie Ampere (17751836), a French mathematician and physicist)

- Current can be thought of as the rate of change of charge:

$$
i=\frac{d q}{d t}
$$

$i=$ the current in amperes, $q=$ the charge in coulombs, $t=$ the time in seconds.

Electric Current

- In reality in metallic conductors current is due to the movement of electrons, however, we follow the universally accepted convention that current is in the direction of positive charge movement.

Battery

- Two ways of showing the same current:

Magnitude of Some Typical Currents

	10^{6}	
	10^{4}	Lightning bolt
		Large industrial motor current
	10^{2}	Typical household appliance current
	10°	Causes ventricular fibrillation in humans
	10^{-2}	Human threshold of sensation
	10^{-4}	
	10^{-6}	Integrated circuit (IC) memory cell current
	10^{-8}	
	10^{-10}	
	10^{-12}	Synaptic current (brain cell)
	10^{-14}	

Voltage (Separation of Charge)

- Voltage (electromotive force, or potential) is the energy required to move a unit charge through a circuit element, and is measured in Volts (Alessandro Antonio Volta (1745-1827) an Italian Physicist).

$$
v=\frac{d w}{d q}
$$

$v=$ the voltage in volts,
$w=$ the energy in joules,
$q=$ the charge in coulombs.

Typical Voltage Magnitudes

Five Basic Circuit Elements

1. Voltage Source (causes current flow)
2. Current Source (causes current flow)
3. Resistor (opposes current flow)
4. Capacitor (stores energy in electric field)
5. Inductor (opposes changes in current - i.e., its an AC resistor)

Voltage Source

Flow of electrons round outer circuit

Resistance

Capacitor

Inductor

Electrical Power and Energy

- Energy?
- Ability to do work (e.g., kinetic energy, potential energy)
- Electrical Energy
- Usually in form of potential (voltage) and kinetic (current) energies related to charges
- Power?
- Rate of change of energy
- Electrical Power
- Rate of change of electrical energy

Power

- The rate of change of (expending or absorbing) energy per unit time, measured in Watts (James Watt (1736-1819) a Scottish inventor and mechanical engineer)

$$
p=\frac{d W}{d t}=\frac{d W}{d q} \times \frac{d q}{d t}=v i
$$

Circuits: open, closed, short

Circuits: Series vs Parallel

Elements that are in series carry the same current.

Node 2
parallel elements have the same voltage

Current: DC vs AC

- Direct current (DC) is a current that remains constant with time.
- Alternating current (AC) is a current that varies sinusoidally with time.

DC various elements

- How does each of these elements react when DC current passes through them?
- Resistor
- Inductor
- Capacitor

DC through Resistor

$$
\begin{aligned}
& \text { Ohm's law } \\
& v=i R, \\
& v=\text { the voltage in volts, } \\
& i=\text { the current in amperes, } \\
& R=\text { the resistance in ohms. }
\end{aligned}
$$

DC through Inductor

$$
\begin{gathered}
\qquad v=L \frac{d i}{d t}, \\
v=\text { the voltage in volts, } \\
i=\text { the current in amperes, } \\
L=\text { inductance in Henrys }(\mathrm{H})
\end{gathered}
$$

For DC, $v=0$ since current does not change!! (i.e. for DC, inductor behaves as a short circuit)

DC through Capacitor

$$
i=C \frac{d v}{d t}, \quad \stackrel{+}{\substack{v}} \stackrel{-}{c}_{C}^{\bullet} \quad C=\text { capacitance in Farads (F) }
$$

$$
v(t)=\frac{1}{C} \int_{t_{0}}^{t} i d \tau+v\left(t_{0}\right)
$$

For DC, capacitor charges/discharges until no more current flows through it!!
(i.e. for DC, capacitor eventually behaves as an open circuit)

How to find power consumed by the elements? Use: $p=v i$.

$p=i^{2} R$.

$$
p=\frac{v^{2}}{R} .
$$

$$
p=v i=C v \frac{d v}{d t}
$$

Quick Revision I - Equivalent Resistance

Series circuits

$$
\begin{gathered}
3 \mathrm{k} \Omega+10 \mathrm{k} \Omega+5 \mathrm{k} \Omega=18 \mathrm{k} \Omega \\
\operatorname{Req}=18 \mathrm{k} \Omega
\end{gathered}
$$

in a Parallel Circuit
$1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}+\ldots+1 / R_{n}$

$1 /$ Req $=0.1 \Omega+0.5 \Omega+1 \Omega=1.6 \Omega$
$R_{\text {eq }}=1 / 1.6 \Omega$

Quick Revision II - Divider Rules

$$
V_{\text {out }}=\frac{V_{5} \times R_{2}}{\left(R_{1}+R_{2}\right)}
$$

Quick Revision II - Divider Rules

Quick Revision III - Loop \& Branch Rules

$$
v_{1}+v_{2}+v_{3}+v_{4}+v_{5}+v_{6}=0
$$

Examples

Questions?? Thoughts??

EE 202
 Electric Circuit Analysis

with
Dr. Naveed R. Butt
@
Jouf University

Current: DC vs AC

- Direct current (DC) is a current that remains constant with time.
- Alternating current (AC) is a current that varies sinusoidally with time.

AC: important parameters

$$
\begin{gathered}
v=V_{m} \cos (\omega t+\phi) \\
\omega=2 \pi f \\
f=\frac{1}{T}
\end{gathered}
$$

AC: important parameters

- Peak Value
- Frequency
- Phase
- rms-value

AC: important parameters

- Peak Value
- Frequency
- Phase
- rms-value

$$
\nabla_{\mathrm{rms}}=\frac{V_{m}}{\sqrt{2}}
$$

$$
f=\frac{1}{T} .
$$

AC: important parameters

Similarly, for sinusoidal current we have ...

$$
\begin{gathered}
i(t)=I_{m} \cos (\omega t+\phi) \\
I_{r m s}=\frac{I_{m}}{\sqrt{2}}
\end{gathered}
$$

Practice Examples

Complex Number in Cartesian and Polar Form

Cartesian form \quad\begin{tabular}{l}
$z=a+j b$

Polar form

$z=|z| e^{j \theta}$

Cartesian
to Polar

Polar to
Cartesian

\quad

$|z|=\sqrt{a^{2}+b^{2}}$

θ \& $=\tan ^{-1} \frac{b}{a}$

a \& $=|z| \cos \theta$

b \& $=|z| \sin \theta$
\end{tabular}

Phasor Notation

$$
\mathbf{V}=V_{m} e^{j \phi}=\mathcal{P}\left\{V_{m} \cos (\omega t+\phi)\right\}
$$

$$
\begin{aligned}
& V_{m} e^{j \phi} \equiv V_{m} \angle \phi^{\circ} \\
& \mathbf{V}=V_{m} \cos \phi+j V_{m} \sin \phi
\end{aligned}
$$

$$
\begin{aligned}
& e^{ \pm j \theta}=\cos \theta \pm j \sin \theta \\
& \cos \theta=\Re\left\{e^{j \theta}\right\} \\
& \sin \theta=\Im\left\{e^{j \theta}\right\} \\
& \sin \left(\theta+\frac{\pi}{2}\right)=+\cos \theta
\end{aligned}
$$

Extracting Phasor from Cartesian Form

$$
\begin{aligned}
\mathbf{V} & =a+j b \\
V_{m}^{2} & =\mathrm{a}^{2}+\mathrm{b}^{2} \\
\phi & =\tan ^{-1}\left(\frac{b}{a}\right) \\
\mathbf{V} & =V_{m} e^{j \phi}
\end{aligned}
$$

using

$$
\mathbf{V}=V_{m} \cos \phi+j V_{m} \sin \phi
$$

Multiplying Phasors

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{1}}=V_{m_{1}} e^{j \phi_{1}} \\
& \mathbf{V}_{\mathbf{2}}=V_{m_{2}} e^{j \phi_{2}} \\
& \begin{aligned}
& \mathbf{V}_{\mathbf{1}} \mathbf{V}_{\mathbf{2}}=V_{m_{1}} V_{m_{2}} e^{j\left(\phi_{1}+\phi_{2}\right)} \\
& \quad=V_{m_{1}} V_{m_{2}} \angle\left(\phi_{1}+\phi_{2}\right)
\end{aligned}
\end{aligned}
$$

Adding Phasors

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{1}}=V_{m_{1}} e^{j \phi_{1}} \\
& \mathbf{V}_{\mathbf{2}}=V_{m_{2}} e^{j \phi_{2}}
\end{aligned}
$$

$$
\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}=V_{m_{1}} \cos \phi_{1}+V_{m_{2}} \cos \phi_{2}+j\left(V_{m_{1}} \sin \phi_{1}+V_{m_{2}} \sin \phi_{2}\right)
$$

Finally, extract phasor from this complex number (as described previously)

Practice Examples

AC through various elements

- How does each of these elements react when $A C$ current passes through them?
- Resistor
- Inductor
- Capacitor

$$
\mathbf{V}=Z \mathbf{I},
$$

AC through Resistor $\underset{\underbrace{v}_{i}}{\sim}$.

$$
\mathbf{V}=R I_{m} e^{j \theta_{i}}=R I_{m} \angle \theta_{i} .
$$

$$
\mathbf{V}=R \mathbf{I},
$$

When AC passes through resistor, the resulting voltage has same phase as

$$
\theta_{v}=\theta_{i}
$$

$$
\mathbf{V}=\omega L I_{m} \angle\left(\theta_{i}+90\right)^{\circ}
$$

$$
\mathbf{V}=j \omega L \mathbf{I}
$$

$$
\theta_{v}=\theta_{i}+90^{\circ}
$$

When AC passes through Inductor, the resulting voltage leads the current by 90 degrees.

AC through Capacitor

$$
\begin{gathered}
\mathbf{V}=\frac{I_{m}}{\omega C} \angle\left(\theta_{i}-90\right)^{\circ} \\
\mathbf{V}=\frac{\mathbf{1}}{\mathbf{j} \omega \mathbf{C}} \mathbf{I}
\end{gathered}
$$

When AC passes through Capacitor, the resulting voltage lags behind the current by 90 degrees.

$$
\theta_{v}=\theta_{i}-90^{\circ}
$$

Unified Notation

$$
\mathbf{V}=Z \mathbf{I}
$$

Resistor:

$$
\mathbf{V}=R \mathbf{I}, \quad Z=R
$$

Inductor:

$$
\mathbf{V}=j \omega L \mathbf{I} .
$$

$$
Z=j \omega L
$$

Capacitor:

$$
\mathbf{V}=\frac{\mathbf{1}}{\mathbf{j} \omega \mathbf{C}} \mathbf{I}
$$

$$
Z=\frac{1}{j \omega C}=j\left(\frac{-1}{\omega C}\right)
$$

Resistance, Impedance, Reactance

When dealing with DC we talk about Resistance, but when dealing with AC we need Impedance!!

Units

Resistance, Impedance, and Reactance are all measured in Ohms (Ω)

Resistance, Impedance, Reactance

Element	Impedance	Resistance (real part of Impedance)	Reactance (imaginary part of Impedance)
Resistor	\boldsymbol{R}	\boldsymbol{R}	-
Inductor	$\boldsymbol{j} \boldsymbol{\omega} \boldsymbol{L}$	-	$\boldsymbol{\omega} \boldsymbol{L}$
Capacitor	$\boldsymbol{j} \frac{\mathbf{- 1}}{\boldsymbol{\omega C}}$	-	$\frac{\mathbf{- 1}}{\boldsymbol{\omega C}}$

Combined Impedance (General Formula)

- When we combine elements in different ways in circuits, we get different combined impedances (leading also to different overall phase shifts). General formulation is as follows.

$$
\begin{aligned}
& \boldsymbol{V}=Z \boldsymbol{I} \quad \text { where } \quad Z=|Z| e^{j \phi_{Z}} \\
& \text { then } \\
& \boldsymbol{V}=|Z| I_{m} e^{j\left(\phi_{i}+\phi_{Z}\right)}
\end{aligned}
$$

Total (combined) impedance of the circuit

Combined Impedance (example: RLC)

$$
\begin{gathered}
\boldsymbol{V}_{\boldsymbol{s}}=Z \boldsymbol{I} \\
\boldsymbol{V}_{\boldsymbol{s}}=\left(Z_{R}+Z_{L}+Z_{C}\right) \boldsymbol{I} \\
\boldsymbol{V}_{\boldsymbol{s}}=\left(R+j \omega L-j \frac{1}{\omega C}\right) \boldsymbol{I} \\
\boldsymbol{V}_{\boldsymbol{s}}=\left(R+j \omega L-j \frac{1}{\omega C}\right) \boldsymbol{I} \\
\boldsymbol{V}_{\boldsymbol{s}}=\left(R+j X_{L}-j X_{C}\right) \boldsymbol{I}
\end{gathered}
$$

Combined Impedance (example: RLC)

$$
\begin{array}{lc}
\boldsymbol{V}_{\boldsymbol{s}}=\left(R+j X_{L}-j X_{C}\right) \boldsymbol{I} & \begin{array}{l}
\text { Converting part in parenthesis } \\
\text { to polar form, with }
\end{array} \\
\boldsymbol{V}_{\boldsymbol{s}}=|Z| e^{j \phi_{Z} \boldsymbol{I}} & |Z|=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}} \\
\boldsymbol{V}_{\boldsymbol{s}}=|Z| e^{j \phi_{Z}} I_{m} e^{j \phi_{i}}=|Z| I_{m} e^{j\left(\phi_{i}+\phi_{Z}\right)} & \phi_{Z}=\tan ^{-1} \frac{X_{L}-X_{C}}{R}
\end{array}
$$

Practice Examples

Questions?? Thoughts??

EE 202
 Electric Circuit Analysis

with
Dr. Naveed R. Butt
@
Jouf University

Recall: DC \rightarrow AC

$$
\begin{gathered}
Z=R+j X \\
Z=|Z| e^{j \theta}
\end{gathered}
$$

$$
\mathbf{V}=Z \mathbf{I}
$$

Impedance

$$
\begin{aligned}
|Z| & =\sqrt{R^{2}+X^{2}} \\
\theta & =\tan ^{-1} \frac{X}{R}
\end{aligned}
$$

Introducing: Complex Power (S)

$$
\begin{gathered}
S=P+j Q . \\
S=|S| e^{j \theta}
\end{gathered}
$$

> Complex Numbers

$$
S=\frac{1}{2} \mathbf{V I}^{*} .
$$

Real Power
Complex Power

Complex Conjugate

To get the complex conjugate, just change the sign of j

$$
\mathbf{I}=I_{m} e^{j \theta} \quad \longleftrightarrow \mathbf{I}^{*}=I_{m} e^{-j \theta}
$$

I and I*are complex conjugates of each other

Five Powers

Power Name	Symbol	Units
Complex Power	S	Volt-Amps (va)
Apparent Power	$\|S\|$	Volt-Amps (va)
Average Power	P	Watts
Reactive Power	Q	Volt-Amps-Reactive (var)
Instantaneous Power	$p(t)$ or p	Watts

$$
\begin{aligned}
& P=|S| \cos \theta, \\
& Q=|S| \sin \theta .
\end{aligned}
$$

Power Factor Angle and Power Factor

It can be shown that the angle θ in the power triangle is in fact equal to $\theta_{v}-\theta_{i}$

Name	Formula
Power Factor Angle	$\theta=\theta_{v}-\theta_{i}=\tan ^{-1} \frac{Q}{P}$
Power Factor	$\cos \left(\theta_{v}-\theta_{i}\right)$

Note that since $Z=\frac{V}{I}$, we can deduce that angle of impedance Z is the same as the power factor angle (i.e., Z and S have the same angle, $\theta_{v}-\theta_{i}$)

$P=$ Average Power (can be calculated from several formulas)

$$
S=P+j Q .
$$

$$
P=\frac{V_{m} I_{m}}{2} \cos \left(\theta_{v}-\theta_{i}\right),
$$

$$
\tan \left(\theta_{v}-\theta_{i}\right)=\frac{Q}{P}
$$

$$
\begin{gathered}
P=V_{\mathrm{eff}} I_{\mathrm{eff}} \cos \left(\theta_{v}-\theta_{i}\right) ; \\
V_{e f f}=V_{r m s} \text { and } I_{e f f}=I_{r m s}
\end{gathered}
$$

$Q=$ Reactive Power (can be calculated from several formulas)

$$
S=P+j Q
$$

$$
Q=\frac{V_{m} I_{m}}{2} \sin \left(\theta_{v}-\theta_{i}\right) .
$$

$$
\tan \left(\theta_{v}-\theta_{i}\right)=\frac{Q}{P}
$$

$$
\begin{aligned}
& Q=V_{\text {eff }} I_{\text {eff }} \sin \left(\theta_{v}-\theta_{i}\right) . \\
& V_{e f f}=V_{r m s} \text { and } I_{e f f}=I_{r m s}
\end{aligned}
$$

$S=$ Complex Power (can be calculated from several formulas)

$$
S=\frac{1}{2} \mathbf{V} \mathbf{I}^{*} .
$$

$$
S=P+j Q
$$

$$
\begin{gathered}
S=\mathbf{V}_{\text {eff }} \mathbf{I}_{\text {eff }}^{*} \cdot=V_{\text {eff }} I_{\text {eff }} /\left(\theta_{v}-\theta_{i}\right) . \\
V_{e f f}=V_{r m s} \text { and } I_{e f f}=I_{r m s}
\end{gathered}
$$

$$
S=I_{\mathrm{eff}}^{2} Z=\frac{V_{\mathrm{eff}}^{2}}{Z^{*}}
$$

$|S|=$ Apparent Power (can be calculated from several formulas)

$$
|S|=\sqrt{P^{2}+Q^{2}}
$$

$$
S=|S| e^{j\left(\theta_{v}-\theta_{i}\right)}
$$

$$
P=|S| \cos \left(\theta_{v}-\theta_{i}\right)
$$

$$
Q=|S| \sin \left(\theta_{v}-\theta_{i}\right)
$$

$p=$ Instantaneous Power (can be calculated from following formula)

$$
p=P+P \cos 2 \omega t-Q \sin 2 \omega t,
$$

Practice Examples

Questions?? Thoughts??

EE 202
 Electric Circuit Analysis

with
Dr. Naveed R. Butt
@
Jouf University

Single-Phase Electricity Generation

3-Phase Electricity Generation

The Generator

3-phase output

More efficient in several ways compared to single-phase including transmission economy and constancy of power

[^0]
3-Phase: Source vs Load

3-Phase: Balanced vs Imbalanced

- Balanced 3-Phase is a set of three AC voltages that satisfy following conditions:
- Equal maximum amplitudes V_{m}
- Equal frequencies ω
- Each voltage exactly 120° out of phase with the other
- Imbalanced
- When any of the three conditions above fails

$$
\begin{aligned}
& \mathbf{V}_{\mathbf{1}}=V_{m} \angle \phi_{a} \\
& \mathbf{V}_{\mathbf{2}}=V_{m} \angle\left(\phi_{a}-120^{0}\right) \\
& \mathbf{V}_{\mathbf{3}}=V_{m} \angle\left(\phi_{a}+120^{0}\right)
\end{aligned}
$$

Balanced 3-Phase: only two possibilities if $\phi_{a}=0^{0}$

$$
\mathbf{V}_{\mathrm{a}}=V_{m} \angle 0^{\circ},
$$

$$
\text { Why } 120^{0} \text { ? Hint: } \frac{360^{0}}{3}
$$

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{a}}=V_{m} \angle 0^{\circ}, \\
& \mathbf{V}_{\mathrm{b}}=V_{m} \angle+120^{\circ}, \\
& \mathbf{V}_{\mathrm{c}}=V_{m} \angle-120^{\circ} .
\end{aligned}
$$

Balanced 3-Phase: sum always zero

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{a}}=V_{m} \angle 0^{\circ}, \\
& \mathbf{V}_{\mathrm{b}}=V_{m} \angle-120^{\circ}, \\
& \mathbf{V}_{\mathrm{c}}=V_{m} \angle+120^{\circ},
\end{aligned}
$$

$$
\mathbf{V}_{\mathrm{a}}+\mathbf{V}_{\mathrm{b}}+\mathbf{V}_{\mathrm{c}}=0
$$

3-Phase: Wye vs Delta

Wye: Line Voltage vs Phase Voltage

Delta: Line Current vs Phase Current

Balanced 3-Phase Wye-Wye Circuit

The entire circuit is balanced when the following four conditions are met

$$
\begin{gathered}
\mathbf{V}_{a^{\prime} n}+\mathbf{V}_{b^{\prime} n}+\mathbf{V}_{c^{\prime} n}=0 \\
Z_{\mathrm{ga}}=Z_{\mathrm{gb}}=Z_{\mathrm{gc}} \\
Z_{1 \mathrm{a}}=\bar{Z}_{1 \mathrm{~b}}=Z_{1 \mathrm{c}} \\
Z_{\mathrm{A}}=Z_{\mathrm{B}}=Z_{\mathrm{C}}
\end{gathered}
$$

Balanced source

Equal source impedances
Equal line impedances

Equal line impedances

Equal load impedances

Wye-Wye: Voltages (load end)

Phase Voltages

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{AN}}=V_{\phi} \angle 0^{\circ}, \\
& \mathbf{V}_{\mathrm{BN}}=V_{\phi} \angle-120^{\circ}, \\
& \mathbf{V}_{\mathrm{CN}}=V_{\phi} \angle+120^{\circ},
\end{aligned}
$$

Line Voltages

$$
\begin{aligned}
& \mathbf{V}_{\mathrm{AB}}=\mathbf{V}_{\mathrm{AN}}-\mathbf{V}_{\mathrm{BN}},=\sqrt{3} V_{\phi} \angle 30^{\circ} \\
& \mathbf{V}_{\mathrm{BC}}=\mathbf{V}_{\mathrm{BN}}-\mathbf{V}_{\mathrm{CN}},=\sqrt{3} V_{\phi} \angle-90^{\circ} \\
& \mathbf{V}_{\mathrm{CA}}=\mathbf{V}_{\mathrm{CN}}-\mathbf{V}_{\mathrm{AN}}=\sqrt{3} V_{\phi} \angle 150^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{V}_{\text {AN }}=V_{\phi} \angle \phi_{a} \\
& \mathbf{V}_{B N}=V_{\phi} \angle\left(\phi_{a}-120^{0}\right) \\
& \mathbf{V}_{C N}=V_{\phi} \angle\left(\phi_{a}+120^{0}\right)
\end{aligned}
$$

In general then:
$\mathbf{V}_{\mathbf{A B}}=\left(\sqrt{3} \angle 30^{\circ}\right) \mathbf{V}_{\mathbf{A N}}$

Wye-Wye: Currents

Single-Phase Equivalent Circuit

1. For analysis, we often extract a singlephase circuit from the 3-phase.
2. Once we have found the parameters of this single-phase, parameters of other two phases can be deduced from them.

Wye-Delta: Currents (load end)

Phase Currents

Line Currents

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{AB}}=I_{\phi} \angle 0^{\circ}, \\
& \mathbf{I}_{\mathrm{BC}}=I_{\phi} \angle-120^{\circ}, \\
& \mathbf{I}_{\mathrm{CA}}=I_{\phi} \angle 120^{\circ} .
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{I}_{\mathrm{aA}}=\mathbf{I}_{\mathrm{AB}}-\mathbf{I}_{\mathrm{CA}}=\sqrt{3} I_{\phi} \angle-30^{\circ}, \\
& \mathbf{I}_{\mathrm{bB}}=\mathbf{I}_{\mathrm{BC}}-\mathbf{I}_{\mathrm{AB}}=\sqrt{3} I_{\phi} \angle-150^{\circ}, \\
& \mathbf{I}_{\mathrm{cC}}=\mathbf{I}_{\mathrm{CA}}-\mathbf{I}_{\mathrm{BC}}=\sqrt{3} I_{\phi} \angle 90^{\circ} .
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{I}_{A B}=I_{\phi} \angle \phi_{a} \\
& \boldsymbol{I}_{\boldsymbol{B C}}=I_{\phi} \angle\left(\phi_{a}-120^{0}\right) \\
& \boldsymbol{I}_{\boldsymbol{C A}}=I_{\phi} \angle\left(\phi_{a}+120^{0}\right)
\end{aligned}
$$

Transformation: Delta \rightarrow Wye

For balanced case, we have:

$$
Z_{Y}=\frac{Z_{\Delta}}{3},
$$

Where:

$$
\begin{aligned}
& Z_{Y}=Z_{1}=Z_{2}=Z_{3} \\
& Z_{\Delta}=Z_{a}=Z_{b}=Z_{c}
\end{aligned}
$$

Practice Examples

Average, Reactive, and Complex Power for 3phase Circuits

```
Notes:
1. All the given power formulas assume
    balanced 3-phase circuits
2. All the given power formulas assume
    effective (rms) values of current and voltage
```


Balanced Wye : Average (real) Power

$$
P_{\mathrm{A}}=\left|\mathbf{V}_{\mathrm{AN}}\right|\left|\mathbf{I}_{\mathrm{aA}}\right| \cos \left(\theta_{\mathrm{vA}}-\theta_{i \mathrm{~A}}\right),
$$

$$
\begin{aligned}
V_{\phi} & =\left|\mathbf{V}_{\mathrm{AN}}\right|=\left|\mathbf{V}_{\mathrm{BN}}\right|=\left|\mathbf{V}_{\mathrm{CN}}\right|, \\
I_{\phi} & =\left|\mathbf{I}_{\mathrm{a}}\right|=\left|\mathbf{I}_{\mathrm{bB}}\right|=\left|\mathbf{I}_{\mathrm{CC}}\right| \\
\theta_{\phi} & =\theta_{v \mathrm{~A}}-\theta_{i \mathrm{~A}}=\theta_{v \mathrm{~B}}-\theta_{i \mathrm{~B}}=\theta_{v \mathrm{C}}-\theta_{i \mathrm{C}} .
\end{aligned}
$$

Balanced Wye : Average (real) Power

$$
P_{T}=3\left(\frac{V_{\mathrm{L}}}{\sqrt{3}}\right) I_{\mathrm{L}} \cos \theta_{\phi}
$$

Total Average Power in terms of line parameters

Balanced Wye : Reactive Power

$$
\begin{aligned}
Q_{\phi} & =V_{\phi} I_{\phi} \sin \theta_{\phi} \\
Q_{T} & =3 Q_{\phi}=\sqrt{3} V_{\mathrm{L}} I_{\mathrm{L}} \sin \theta_{\phi}
\end{aligned}
$$

Same reactive power in each phase

Total Reactive Power

Balanced Wye : Complex Power

$$
\begin{aligned}
& S_{\phi}=P_{\phi}+j Q_{\phi}=\mathbf{V}_{\phi} \mathbf{I}_{\phi}^{*} \\
& S_{T}=3 S_{\phi}=\sqrt{3} V_{\mathrm{L}} I_{\mathrm{L}} \angle \theta_{\phi}^{\circ} .
\end{aligned}
$$

Same complex power in each phase

Total Complex Power

Balanced Delta : Power equations same as for Wye

Only difference now are the definitions of phase voltage, phase current, and power factor angle, as follows:

$$
\begin{aligned}
\left|\mathbf{V}_{\mathrm{AB}}\right| & =\left|\mathbf{V}_{\mathrm{BC}}\right|=\left|\mathbf{V}_{\mathrm{CA}}\right|=V_{\phi}, \\
\left|\mathbf{I}_{\mathrm{AB}}\right| & =\left|\mathbf{I}_{\mathrm{BC}}\right|=\left|\mathbf{I}_{\mathrm{CA}}\right|=I_{\phi}, \\
\theta_{v \mathrm{AB}}-\theta_{i \mathrm{AB}} & =\theta_{v \mathrm{BC}}-\theta_{i \mathrm{BC}}=\theta_{v \mathrm{CA}}-\theta_{i \mathrm{CA}}=\theta_{\phi},
\end{aligned}
$$

Practice Examples

Questions?? Thoughts??

EE 202
 Electric Circuit Analysis

with
Dr. Naveed R. Butt
@
Jouf University

Circuit Analysis - mostly about v, i, p

What happens when circuit configuration changes?

Circuits: First-Order vs Second-Order

First-Order

- Only one storage element (one inductor or one capacitor) - e.g., RL, RC
- Mathematically described by first-order differential equations

Second-Order

- Two storage elements (Inductors or Capacitors or mix) - e.g., RLC
- Mathematically described by second-order differential equations

(a)

(b)

(c)

(d)

Response: Natural vs Step

Natural Response

- Behavior of a circuit when no voltage (or current) source is present or is suddenly removed at $t=0$
- Circuit basically driven by initial conditions

Response: Natural vs Step

Step Response

- Behavior of a circuit when a fixed voltage (or current) is applied from $t=0$

$$
u(t)= \begin{cases}0 & t<0 \\ 1 & t>0\end{cases}
$$

Graph of $f(t)=u(t)$, the unit step function.

Response: Transient vs Steady-State

Transient Response

- Response immediately after the voltage (or current) source is applied

Steady-State Response

- Response once the circuit has reached equilibrium
- Typically a reasonable amount of time after source applied

Four Important Parameters to Consider

Source Value

- How much voltage (or current) is applied to the circuit at $t=0$?
- Denoted: V_{S} or I_{S}

Initial Condition

- How much voltage (or current) was already there in the circuit just before switching?
- Denoted: V_{0} or I_{0}

$$
i\left(0^{-}\right)=i\left(0^{+}\right)=I_{0}
$$

Four Important Parameters to Consider

Steady-State Value

- How much voltage (or current) is there in the steady-state (i.e. when a long time has passed)
- Denoted: V_{∞} or I_{∞}

Four Important Parameters to Consider

Time Constant

- A parameter used to find how quickly the circuit goes towards its steady state
- Denoted: τ
- Typically steady-state defined as response after $t \geq 5 \tau$

RL Step Response - Current

$$
i\left(0^{-}\right)=i\left(0^{+}\right)=I_{0}
$$

$$
\text { Time Constant: } \tau=\frac{L}{R}
$$

RL Step Response - Voltage

$$
v=\left(V_{s}-I_{0} R\right) e^{-(R / L) t} .
$$

$$
i\left(0^{-}\right)=i\left(0^{+}\right)=I_{0},
$$

$$
\text { Time Constant: } \tau=\frac{L}{R}
$$

RL Step Response case: $I_{0}=0$

RC Step Response - Voltage

$$
v_{C}=I_{s} R+\left(V_{0}-I_{s} R\right) e^{-t / R C}, \quad t \geq 0 .
$$

$$
v\left(0^{-}\right)=v(0)=v\left(0^{+}\right)=V_{0}
$$

Time Constant: $\tau=R C$

RC Step Response - Current

$$
i=\left(I_{s}-\frac{V_{0}}{R}\right) e^{-t / R C}, \quad t \geq 0^{+}
$$

$$
v\left(0^{-}\right)=v(0)=v\left(0^{+}\right)=V_{0},
$$

Time Constant: $\tau=R C$

General Formulas (Natural \& Step Response)

Current through inductor in standard
RL formation

General Formulas (Natural \& Step Response)

Voltage across capacitor in standard
RC formation
Time constant: $\tau=R C$

$$
v_{C}(t)=V_{\infty}+\left(V_{o}-V_{\infty}\right) e^{-t / \tau}
$$

Steady-state voltage across capacitor

Initial voltage across capacitor

Practice Examples

Questions?? Thoughts??

EE 202
 Electric Circuit Analysis

with
Dr. Naveed R. Butt
@
Jouf University

Circuits: First-Order vs Second-Order

First-Order

- Only one storage element (one inductor or one capacitor) - e.g., RL, RC
- Mathematically described by first-order differential equations

Second-Order

- Two storage elements (Inductors or Capacitors or mix) - e.g., RLC
- Mathematically described by second-order differential equations

(a)

(b)

(c)

(d)

Problem - differential equations are hard!!

We have a problem!!

- Higher-order circuits lead to higher-order differential equations
- To analyze such circuits we need to solve the higherorder differential equations
- But higher-order differential equations are generally hard to solve!!

Solution:

Laplace

Laplace Transform - why?

Laplace Transform: Calculus \rightarrow Algebra

Type	$f(t)(t>0-)$	$F(s)$	
(impulse)	$\delta(t)$	1	Key
(step)	$u(t)$	$\frac{1}{s}$	
(ramp)	$e^{-a t}$	s $\frac{1}{s}{ }^{2}$ 1	Formula tables exist for convenient use of Laplace Transform
(exponential)	$e^{-a t}$	$\overline{s+a}$	
(sine)	$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$	
(cosine)	$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}$	Notation
(damped ramp)	$t e^{-a t}$	$\frac{1}{(s+a)^{2}}$	$\mathscr{L}\{f(t)\}=F(s)$
(damped sine)	$e^{-a t} \sin \omega t$	$\frac{\omega}{(s+a)^{2}+\omega^{2}}$	
(damped cosine)	$e^{-a t} \cos \omega t$	$\frac{s+a}{(s+a)^{2}+\omega^{2}}$	

Laplace Transforms of Derivatives and Integrals

$$
\mathscr{L}\{f(t)\}=F(s)
$$

$$
\begin{array}{cc}
\text { Time-Domain } & s \text {-Domain (Laplace) } \\
\frac{d f(t)}{d t} & s F(s)-f\left(0^{-}\right) \\
\int_{0}^{t} f(x) d x & \frac{F(s)}{s} \\
\frac{d^{n} f(t)}{d t^{n}} & s^{n} F(s)-\text { (initial conditions) }
\end{array}
$$

Using Laplace - a simple example

Given: $\quad \frac{d f(t)}{d t}+5 f(t)=0 \quad$ And $\quad f\left(0^{-}\right)=2$
Solution:

$$
\begin{array}{r}
s F(s)-f\left(0^{-}\right)+5 F(s)=0 \\
s F(s)-2+5 F(s)=0 \\
s F(s)+5 F(s)=2 \\
(s+5) F(s)=2 \\
F(s)=\frac{2}{s+5} \\
f(t)=2 e^{-5 t}
\end{array}
$$

Find: $\quad f(t)$

Laplace Formulas we use:

$$
\mathscr{L}\left\{\frac{d f(t)}{d t}\right\}=s F(s)-f\left(0^{-}\right)
$$

$$
\mathscr{L}\left\{e^{-a t}\right\}=\frac{1}{s+a}
$$

Using Laplace - a simple example

Given: $\quad 2 \frac{d f(t)}{d t}+f(t)=0$ And $f\left(0^{-}\right)=3$
Solution:

$$
\begin{gathered}
2\left(s F(s)-f\left(0^{-}\right)\right)+F(s)=0 \\
2(s F(s)-3)+F(s)=0 \\
2 s F(s)-6+F(s)=0 \\
2 s F(s)+F(s)=6 \\
(2 s+1) F(s)=6
\end{gathered}
$$

$$
\begin{gathered}
F(s)=\frac{6}{2 s+1}=\frac{6}{\frac{2}{2}(2 s+1)}=\frac{1}{2} \times \frac{6}{s+\frac{1}{2}}=\frac{1}{2} \times 6 \times \frac{1}{s+1 / 2} \\
f(t)=\frac{1}{2} \times 6 \times e^{-\frac{1}{2} t}=3 e^{-\frac{1}{2} t}
\end{gathered}
$$

Laplace for Circuit Analysis

- Electrical Quantities in Laplace
- Voltage
- Current
- Basic Elements in Laplace
- Resistor
- Inductor
- Capacitor
- DC source connected at $t=0$
- AC source connected at $t=0$
- Some Second-Order Circuits in Laplace
- RLC with DC source
- RLC with AC source

Laplace - Voltage and Current

Laplace - Resistor

Time
$v=R i$.

Phasor
$\mathbf{V}=R \mathbf{I}$,

Laplace

$$
V=R I
$$

Laplace - Inductor (with initial current I_{0})

Time

$$
v=L \frac{d i}{d t}
$$

$$
\mathbf{v}=j \omega L \mathbf{I} .
$$

$$
V=s L I-L I_{0}
$$

Laplace - Capacitor (with initial voltage V_{0})

Time
Phasor
Laplace

$$
i=C \frac{d v}{d t}
$$

$$
\mathbf{I}=j \omega C \mathbf{V} .
$$

$$
I=s C V-C V_{0}
$$

Laplace - Impedances (assuming $V_{0}=0, I_{0}=0$)

Phasor

Ohm's Law:

Resistor:

$$
Z=R
$$

$$
Z=R
$$

Inductor:
Capacitor: $\quad Z=\frac{1}{j \omega C}$

$$
Z=s L
$$

$Z=\frac{1}{S C}$

Laplace - Sources

Laplace Form

$$
\frac{V_{d c}}{s}
$$

$$
\frac{I_{d c}}{S}
$$

AC Voltage Source (connected at $t=0$)

$$
v_{a c}=V_{m} \cos (\omega t)
$$

$$
\frac{s V_{m}}{s^{2}+\omega^{2}}
$$

AC Current Source (connected at $t=0$)

$$
i_{a c}=I_{m} \cos (\omega t)
$$

Laplace - RLC Circuit with DC Source

Time

Laplace

Analysis Task: Find i_{L}

Assumptions:

- DC current source connected at $t=0$
- All initial conditions

Laplace - RLC Circuit with DC Source

$$
V=\frac{I_{\mathrm{dc}} / C}{s^{2}+(1 / R C) s+(1 / L C)}
$$

$$
I_{L}=\frac{K_{1}}{s}+\frac{K_{2}}{s+32,000-j 24,000}
$$

Using "Partial Fraction Decomposition"

$$
+\frac{K_{2}^{*}}{s+32,000+j 24,000} .
$$

$$
I_{L}=\frac{I_{\mathrm{dc}} / L C}{s\left[s^{2}+(1 / R C) s+(1 / L C)\right]} .
$$

$$
K_{1}=\frac{384 \times 10^{5}}{16 \times 10^{8}}=24 \times 10^{-3},
$$

$$
I_{L}=\frac{384 \times 10^{5}}{s\left(s^{2}+64,000 s+16 \times 10^{8}\right)}
$$

$$
K_{2}=\frac{384 \times 10^{5}}{(-32,000+j 24,000)(j 48,000)}
$$

By Inverse

$$
=20 \times 10^{-3} \angle 126.87^{\circ} .
$$ Laplace

$$
I_{L}=\frac{384 \times 10^{5}}{s(s+32,000-j 24,000)(s+32,000+j 24,000)}
$$

$i_{L}=\left[24+40 e^{-32,000 t} \cos \left(24,000 t+126.87^{\circ}\right)\right] u(t) \mathrm{mA}$.

Laplace - RLC Circuit with AC Source

$$
\begin{aligned}
& i_{g}=I_{m} \cos \omega t \mathrm{~A}, \\
& I_{m}=24 \mathrm{~mA} \text { and } \omega=40,000 \mathrm{rad} / \mathrm{s} .
\end{aligned}
$$

Analysis Task: Find i_{L}

Assumptions:

- AC current source connected at $t=0$
- All initial conditions zero

Laplace - RLC Circuit with AC Source

Remaining steps similar to DC case ...

$$
\begin{aligned}
& I_{L}=\frac{V}{s L}=\frac{\left(I_{m} / L C\right) s}{\left(s^{2}+\omega^{2}\right)\left[s^{2}+(1 / R C) s+(1 / L C)\right]} . \\
& I_{L}=\frac{384 \times 10^{5} s}{\left(s^{2}+16 \times 10^{8}\right)\left(s^{2}+64,000 s+16 \times 10^{8}\right)} .
\end{aligned}
$$

$$
i_{L}=\left(15 \sin 40,000 t-25 e^{-32,000 t} \sin 24,000 t\right) u(t) \mathrm{mA}
$$

Practice Examples

Questions?? Thoughts??

EE 202
 Electric Circuit Analysis

with
Dr. Naveed R. Butt
@
Jouf University

Elements: Active vs Passive

Sensors: some interesting problems ...

Operational Amplifiers (Op-Amps)

- An electronic component
- An active component
- i.e. requires external power to operate and provides net energy to circuit
- In its very basic form: a voltage "amplifying" device
- We can also call it "a voltage-controlled voltage source"
- Can perform several useful operations
- Examples: voltage amplification, addition, subtraction, integration etc.
- Becomes "operational" when:
- We connect different elements (resistors, capacitors etc.) to its terminals
- Configuration of these external elements decides which operation it performs

Op-Amp: terminals and symbol

Op-Amp: in a package

Op-Amp: in a circuit

Terminal Variables: voltages and currents

Ideal Op-Amp Characteristics

Op-Amp: Ideal vs Realistic

	Ideal	Realistic	Typical Range	
Input Impedance	∞	Extremely High	$10^{5}-10^{13} \Omega$	
Output Impedance	0	Extremely Low	$10-100 \Omega$	
Open-loop Gain (A)	∞		Extremely High	$10^{5}-10^{8}$
Bandwidth	∞	Works well for all frequencies within range of operation	Varies by application	

Op-Amp: Operating Ranges

$$
A=\text { gain }
$$

Operation 1: Inverting Amplifier

$$
v_{o}=\frac{-R_{f}}{R_{s}} v_{s}
$$

$$
\text { Voltage Gain }=A_{v}=\frac{v_{o}}{v_{s}}=-\frac{R_{f}}{R_{s}}
$$

Upper limits

$$
\left|v_{o}\right| \leq V_{C C}, \quad\left|\frac{R_{f}}{R_{s}} v_{s}\right| \leq V_{C C}, \quad \frac{R_{f}}{R_{s}} \leq\left|\frac{V_{C C}}{v_{s}}\right|
$$

Inverting Amplifier in Open-Loop Setting

$$
v_{o}=-A v_{n}
$$

Open-loop gain

Operation 2: Non-Inverting Amplifier

$$
v_{o}=\frac{R_{s}+R_{f}}{R_{s}} v_{g} .
$$

Results also hold if this resistor not there.

$$
\text { Voltage Gain }=A_{v}=\frac{v_{o}}{v_{g}}=1+\frac{R_{f}}{R_{s}}
$$

Operation 3: Summing Amplifier

$$
\begin{aligned}
& v_{o}=-\left(\frac{R_{f}}{R_{\mathrm{a}}} v_{\mathrm{a}}+\frac{R_{f}}{R_{\mathrm{b}}} v_{\mathrm{b}}+\frac{R_{f}}{R_{\mathrm{c}}} v_{\mathrm{c}}\right) . \\
& v_{o}=-\frac{R_{f}}{R_{s}}\left(v_{\mathrm{a}}+v_{\mathrm{b}}+v_{\mathrm{c}}\right) . \quad \text { If } R_{\mathrm{a}}=R_{\mathrm{b}}=R_{\mathrm{c}}=R_{s} \\
& v_{o}=-\left(v_{\mathrm{a}}+v_{\mathrm{b}}+v_{\mathrm{c}}\right) . \quad R_{f}=R_{s}
\end{aligned}
$$

Operation 4: Difference Amplifier

v

$$
v_{o}=\frac{R_{\mathrm{d}}\left(R_{\mathrm{a}}+R_{\mathrm{b}}\right)}{R_{\mathrm{a}}\left(R_{\mathrm{c}}+R_{\mathrm{d}}\right)} v_{\mathrm{b}}-\frac{R_{\mathrm{b}}}{R_{\mathrm{a}}} v_{\mathrm{a}} .
$$

$$
v_{o}=v_{b}-v_{a} \quad \text { if } \frac{R_{b}}{R_{a}}=\frac{R_{d}}{R_{c}}=1
$$

Operation 5: Voltage Follower (Buffer)

Practice Examples

Two-Port Networks

Two-Port Networks

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2}, \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2} ;
\end{aligned}
$$

Two-Port Networks

$$
\begin{aligned}
& V_{1}=z_{11} I_{1}+z_{12} I_{2}, \\
& V_{2}=z_{21} I_{1}+z_{22} I_{2} ;
\end{aligned}
$$

$$
\begin{aligned}
& z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} \Omega, \\
& z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0} \Omega, \\
& z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0} \Omega, \\
& z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} \Omega .
\end{aligned}
$$

Practice Examples

Find the z parameters for the circuit shown in Fig. 18.3.

Figure 18.3 © The circuit for Example 18.1.

Solution

The circuit is purely resistive, so the s-domain circuit is also purely resistive. With port 2 open, that is, $I_{2}=0$, the resistance seen looking into port 1 is the 20Ω resistor in parallel with the series combination of the 5 and 15Ω resistors. Therefore

$$
z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0}=\frac{(20)(20)}{40}=10 \Omega
$$

When I_{2} is zero, V_{2} is

$$
V_{2}=\frac{V_{1}}{15+5}(15)=0.75 V_{1}
$$

and therefore

$$
z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}=\frac{0.75 V_{1}}{V_{1} / 10}=7.5 \Omega .
$$

When I_{1} is zero, the resistance seen looking into port 2 is the 15Ω resistor in parallel with the series combination of the 5 and 20Ω resistors. Therefore

$$
z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0}=\frac{(15)(25)}{40}=9.375 \Omega .
$$

When port 1 is open, I_{1} is zero and the voltage V_{1} is

$$
V_{1}=\frac{V_{2}}{5+20}(20)=0.8 V_{2}
$$

With port 1 open, the current into port 2 is

$$
I_{2}=\frac{V_{2}}{9.375}
$$

Hence

$$
z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0}=\frac{0.8 V_{2}}{V_{2} / 9.375}=7.5 \Omega
$$

Step 1: Solve for $I_{2}=0$

$$
\begin{aligned}
& z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{I_{2}=0} \\
& z_{11}=20| |(15+5)=20| | 20=\frac{20 \times 20}{40}=10 \Omega
\end{aligned}
$$

$$
I_{2}=0,
$$

$$
\begin{array}{ll}
z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0} \quad \frac{V_{2}}{V_{1}}=\frac{15}{15+5} & V_{2}=\frac{15 V_{1}}{20}=0.75 V_{1} \\
I_{1}=\frac{V_{1}}{z_{11}}=0.1 V_{1} \\
z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}=\frac{0.75 V_{1}}{V_{1} / 10}=7.5 \Omega . &
\end{array}
$$

$$
\begin{aligned}
& z_{22}=\left.\frac{V_{2}}{I_{2}}\right|_{I_{1}=0} \\
& z_{22}=15| |(20+5)=15| | 25=\frac{15 \times 25}{40}=9.375 \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \frac{V_{1}}{V_{2}}=\frac{20}{20+5} \quad V_{1}=0.8 V_{2} \quad I_{2}=\frac{V_{2}}{z_{22}}=\frac{V_{2}}{9.375} \\
& z_{12}=\left.\frac{V_{1}}{I_{2}}\right|_{I_{1}=0}=\frac{0.8 V_{2}}{V_{2} / 9.375}=7.5 \Omega .
\end{aligned}
$$

$$
\begin{gathered}
V_{1}=z_{11} I_{1}+z_{12} I_{2} \\
V_{2}=z_{21} I_{1}+z_{22} I_{2} \\
\\
V_{1}=10 I_{1}+7.5 I_{2} \\
V_{2}=7.5 I_{1}+9.375 I_{2}
\end{gathered}
$$

Questions?? Thoughts??

[^0]: T. Davies 2002

